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Abstract

The variability of AVHRR calibration coefficients

in time was analysed using algorithms of linear and

non-linear time series analysis. Specifically we have

used the spline trend modeling, autoregressive pro-

cess analysis, incremental neural network learning
algorithm and redundancy functional testing. The

analysis performed on available AVttRR data sets

revealed that (1) the calibration data have non-

linear dependencies, (2) the calibration data depend
strongly on the target temperature, (3) both cal-

ibration coefficients and the temperature time se-

ries can be modeled, in the first approximation, as

autonomous dynamical systems, (4) the high fre-

quency residuals of the analysed data sets can be

best modeled as an autoregressive process of the
10th degree.

We have dealt with a non-linear identification prob-

lem and the problem of noise filtering (data smooth-

ing). The system identification and filtering are sig-
nificant problems for AVHRR data sets. The al-

gorithms oulined in this study can be used for the

future EOS missions. Prediction and smoothing al-

gorithms for time series 3f calibration data provide
a functional characterization of the data. Those al-

gorithms can be particularly useful when calibration
data are incomplete or sparse.

1. Introduction

EOS-Earth Observing System
The suite of instruments to be flown on the Earth

Observing System is intended to provide a compre-

hensive data set of global observations of the Earth
in a broad range of sensor wavelenghts. Global cov-

erage sensors will be the primary tools for data col-
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lecting. Those instruments will play a major role

in the global studies of our environment under the

EOS project. To provide a quality data set for sci-

entists, the raw data sets need to be calibrated. Ob-

viously this effort requires a good calibration algo-
rithm. We will focus in this paper on analysis of
time series of calibration coefficients. This analysis

can help in defining an optimum value of calibra-

tion coefficient based on the previous and current
values determined from on-board calibration mea-

surements. Also, the description of calibration data

sets in terms of e.g. nonlinear dynamical systems

and autoregressive processes will help in improving
both the short and longterm estimation accuracy of

calibration coefficients.

AVHRR Calibration Coefficients Data

Data sets from Advanced Very High Resolution

Radiometer (AVHRR) sets were analysed. The
AVHRR system was flown on the National Oceano-

graphic and Atmospheric Administration (NOAA)

operational meteorological satellites (NOAA-9/ll).

At a given time, the calibration data from one chan-

nel consists of a pair of numbers, the slope and inter-

cept, that represent a straight line, the calibration
curve. For one channel we obtain two time series,

the slope as a function of time, and the intercept as
a function of time. We have analysed the available

data sets: year 1988, day 25; and year 1990, day

183.

The Calibration Time Series

The calibration data sets form time series. A time

series {y(t)} can be thought of as a realization of a

stochastic process. A stochastic process can be de-
scribed as a sequence of random variables. The best

studied are linear stochastic processes. We used

standard modeling techniques [Box, Jenkins 1976],

based on autoregressive (AR) models to analyse the

high frequency components of the data. Among our

long term goals is to establish a short term, medium

term and long term model for the estimate of cal-
ibration coefficients for AVHRR data. We would

like to approximate calibration time series by linear

models whenever we can avoid using computation-

ally costly non-linear models. Testing for nonlinear-

ity is not a trivial task. Recently tests for nonlinear-

ity based on the redundancy (entropy) functionals

have been introduced [ Palus, 1993 ] as a tool for de-

tecting chaotic dynamical systems. We used redun-

dancy functionals to detect nonlinear dependencies
of the time series in our data sets. Knowing that

we are dealing with non-linear models we would like

to build a nonlinear prediction model for calibration
coefficients time series as a multivariable function of

external variables (the principal one is undoubtedly

the target temperature). At this phase of the anal-

ysis we have used an incremental (recursive) neural
network architecture to simulate the dynamics of
the behavior of calibration coefficients and the tar-

get temperature for one orbit worth of data.
We have observed four main signal components in

the data sets. The first component, a slow trend,

corresponds to the aging of the sensors. The second
trend, a nonlinear ( pseudo-periodic ) dependence,

corresponds mainly to the effect of the day or night

part of the spacecraft orbit on the sensors ( the sen-

sors are housed in the spacecraft which is affected

by variable external pseudo-periodic conditions )

The third component consists of the medium fre-

quency signal (a few minute period).
The calibration coefficients are contaminated by

noise.

2. The Time Series Modeling

Goals

Data Averaging
The first goal of our analysis of the AVHRR data
sets was to define the current value of a calibration

coefficient, i.e. the value at a given time. Since
a data set of calibration coefficients is a time se-

ries contaminated with noise, this task consists of a

trend estimation, by a trend modeling and a data

smoothing procedure. The results of this process
are time series of calibration coefficients with noise
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filtered out.This process includes the estimates of
confidence intervals.

Analysis of Residuals

The second goal, and a part of the data averaging
procedure, is analysis of the residuals. As the series

can have autocorrelated terms, it needs to be mod-

eled by an autoregressive process.

Calibration Data Dynamics

The third goal was to investigate the modeling and

predictibility of the calibration coefficients in time
in terms of a nonlinear dynamical system

dx/dt = f(z(t), t, u(t)) (1)

where x(t) represents a time series, f0 is an
unnknown non-linear function which we want to

model and approximate, u(t) represent external pa-

rameters (e.g. the target temperature).

Dynamics Diagnostic
A number of tests for non-linearity have been pro-

posed [Tong 1993]. We have used a redundancy-

based test for non-linearity [Palus 1993].

AVHRR Applications
Applications of modeling techniques for the AVHRR

data sets are far reaching. Firstly, they will allow

us, on a rigorous basis, to define the current cali-
bration values of sensors more accurately and sta-

tistically fully qualified in terms of confidence in-

tervals. Secondly, they will improve the long term
and short term estimates of calibration coefficients

thrc_ugh capturing the system dynamics.

3. Calibration Value Estima-

tion Procedure

For AVHRR data sets, we made the assumption that

the observed series can be described by the model

• (t) = q(t) + o(t) + 40 (2)

where t is the discrete reference time, q(t) repre-

sents a long-term trend (pseudo-oscilations with pe-

riod equal approximately to 102 minutes, or 1 orbit),

v(t) is a component describing the short-term peri-

odicities. Finally, e(t) is white noise. The first term

q(t) is driven by external phenomena (e.g. tempera-

ture, light intensity ), and the dynamics of the sen-
sors.

A number of methods are available for signal compo-

nent modeling. We focused in the present study on

the method of splines, autoregressive modeling, re-
dundancy functionals and adaptive neural network
methods.

Trend Modeling in the Time Domain

(Splines)
The first task, before we can analyse noise, consists

of estimating and removing the component q(t) from

the equation (2). A splines smoothing is the stan-

dard modeling choice [Wegman 1983]. As the char-

acter of the component q(t) changes several times

during one period, an algorithm is needed to cap-

ture this change in the trend. The number of knots
can be controlled by the Akaike's AIC criterion [Eu-

bank, Speckman 1990].

Dynamics Modeling in the Time Domain

(Dynamical Systems)
The physical mechanisms governing the evolution

of the system of calibration coefficients are not fully

understood but we assumed that the data is pro-

duced by an underlying generator which is a low

dimensional dynamical system.

The first component q(t) is driven by external phe-

nomena (e.g. temperature, the light intensity). This
relation is complex and non-linear. In the first ap-

proximation we assumed that the 2nd order au-

tonomous difference equations

dxldt = f(x(t)) (3)

can simulate a dynamical system that governs
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the calibration coefficients. In other words we as- Series Prediction by Bootstrapping

sumed that the calibration coefficients are fully de- The trained net can be used for predicting the future

scribed by the dynamics of the temperature evolu- values of the time series. We have used trained nets

tion, which is , for simplicity, described by a 2nd to predict various dynamic systems. Many authors

order autonomous syalem. The 2nd order calibra- have used different neural network architectures to

tion coefficient system generates a nonlinear map predict chaotic systems. The standard test cases are

g:SC_R2 _R

x(i + 1) -- g(x(i), x(i - 1))

where the set S contains the training exemplars.

This map can be captured by a neural network al-

gorithm.

Dynamics Modeling in the Time Domain

(Neural Networks)
We have simulated one orbit worth of the 1988 data

set by the Cascor learning algorithm. Because we

assumed the 2nd order dynamics (see the previous

section) we set the number of inputs for our neu-
ral net to two. Tha trained network creates a delay

map characterizing the underlying dynamical sys-

tem. Many different architectures of feedforward
neural networks have been used for signal model-

ing and prediction [Chen, Billings, 1992]. Nonlin-

ear system identification and modeling using neural
networks has become very popular tool for mod-

eling and identification of non-linear autonomous
systems [Vemuri, 1994]. The neural network algo-

rithms offer the flexibility of infinitely many parame-

ters. The number of parameters is usually indirectly

controlled through cross-validation. The method of
cross-validation consists, in practical terms, of two

phases. First a net is trained on a subset of data,
secondly the trained net is tested on another data

set. This process is repeated until the residual er-
ror on the test data hits its minimum. In our nu-

merical simulation the cross validation test has been

implemented using the Cascor code [Fahtman,1992].
The follow-on tests will demonstrate the numerical

agreement of the prediction and the real data. The
real data for additinal orbits are being prepared for

neural network prediction tests.

logistic equation, Mackey-Glass nonlinear differen-

tial delayed equation and van der Pol equation.

The methodology of predicting, known as boot-

strapping, works as follows: For an n input, m out-

put network, a training exemplar is formed by tak-

ing n+m consecutive values from the data series to

be extrapolated (predicted). Starting at an arbi-

trary value x(i), the first n values (x(i), ..., x(n +i-

1)) are presented to the network inputs. The target
values are the next m values, thus a general training

exemplar for an n input, m output network can be

represented as (x(i),..., x(n + i - 1)..., x(n + m + i -

1)). Each successive exemplar is formed by start-

ing one value beyond the previous starting value.
The number of exemplars sufficient to provide the

desired accuracy is to be determined by numerical

experiments. After the iterative learning procedure

has converged we have a map (e.g. for one output,

re=l)

x(i + 1) = g(x(i),..., x(i - n + 1))

By bootstrapping the net into the future , this

map can be iterated to give

x(i+2) = g(g((xi),..., x(i-n+l)), x(i), ..., x(i-n+2))

The trained network can be analysed and differ-

ence equations describing the underlying dynamics

can be recovered [ Lowe, Webb 1994 ].

Noise Analysis in the Time Domain (AR-

Autoregression)

The AR isthe standard method for modeling lin-

ear dynamical systems. In the next step we have

todecide about the characterof the second compo-

nent v(t).The standard methodology recommends
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analysingspectrumandperiodogram,in orderto
decidebetweenthetrigonometricregressionor au-
toregression.The FFT transfomation,Fig.3,did
notshowwell isolatedhigh-frequencycomponents
of oursignal.Thereforethestandardmethodsus-
inglow-passfiltersfornoiseremovalarenotdirectly
applicableforourdatasets.Theperiodogramre-
vealedseveralisolatedpeaksin someregions.This
featureindicatedthattrigonometricfunctionsmight
bea goodcandidatefor modelingofourdataset.
However,wehavenotobservedthisbehaviorof pe-
riodogramsthroughtheentiretimedomain.Onthe
otherhand,thepartialautocorrelationsshowedsig-
nificantdependenciesof the laggedvectorcompo-
nentsforlagsupto 10,lesssignificantdependencies
for thehigherlags.Thatis whytheAR approach
hasbeenpreferredforstatisticalanalysisofthese-
ries. In otherwords,if wedenotetheresidualsof
thefirst stepofanalysisr(t) = z(t) - q(t), we have
the model

k

r(t) = v(t) + e(t) = E b(i)r(t - i) + e(t),
i=1

where b(i) are the parameters and k is the order
of the autoregressive process AR(k).

Nonlinearity Test

The real-world data show usually some degree of

nonlinearity. Our test was based on information-

theoretic (redundancy) functionals. The redun-
dancy test is based on the fact that noise, linear and

nonlinear structures of a time series are represented

by qualitatively different redundancy functionals.

Testing for nonlinearity of the calibration coeffi-

cients time series was performed using redundancies.

Those methods were recently proposed for testing

of non-linearity of dynamical systems [Palus, 1992]

and are based on the general concepts of informa-
tion theory.

The linear redundancy L(X1,...,X,_) of an n-
dimensional random variable with zero mean and

covariance matrix C is defined as

L(X1,..., X,) = 1/2 E log(vii) -- 1/2 E log(_ri)
i=1 i=1

where vii are the diagonal elements and _i are the
eigenvalues of the n × n covariance matrix C.

The n-dimensional (non-linear) redundancy is de-
fined as

R(X,,..., X,,) = g(z,) + .... H(Zn) + H(X,, ...Xn)

These two functionals, as the functions of the time

lag r, provide measures that differentiate linear and
non-linear structures presented in the lagged ver-

sions of the component x(t). The lagged version

(x(t), x(t + r),...x(t + (n - 1)r))

of x(t) is a realization of the random variable

(X1,..., X_,) where n is the embbeding dimension.

4. Data Characterization

Visual inspection of the data from different time

periods (1988,1990) and for different platforms re-
vealed common features. We have searched the

available data sets for features that could explain

the variability of the calibration coefficients. Two

features were outstanding. The long-term compo-

nent v(t) behaves, in the first approximation, as
an autonomous dynamical system within one orbit,

Fig.6.

Also PRT counts (Platinum Resistance Thermome-

ter), located in the word 20 of the 103-word of
HRPT minor frame [Kidwell. 1991] behave as an au-

tonomous dynamical system. The target tempera-

ture is temperature of the internal target. This tem-
perature can be calculated from the output of four

PRT counts located in words 18, 19, 20 of HRPT
minor frame. The conversion of PRT counts c to

absolute temperature is accomplished by

4

T(K)= EajcJ
j=O
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• The patch temperature ( word 21) has been con-
stant for the inspected data sets.

5. Summary of Numerical re-

suits

Our numerical results and observations are summa-

rized in figures 1 through 17. In the following the
first tw£_d_igits indicate the year, and the next three
digits Julian day. The slope coefficients vary signif-
icantly over one orbit. Fig.1 shows the slope coef-
ficient series for approximately one period (88025).

Fig.2 shows the PRT counts series for 88025. The
FFT for the slope data (88025) did not show any sig-
nificant isolated frequencies, in Fig.3. Fig.4 shows
the typical relation between a slope series and PRT
counts for the same time period (88025). The PRT
dynamical system delay diagram (88025) shown in
Fig.5 is a typical example of a map which can be
learned by a neural network. The slope dynamical
system delay diagram (88025) is another example of
the dynamics learnable by a net (Fig.6). The PRT

series (90183) shows similar features to the series
(88025) even when the time difference between these
series is several years (Fig.7). The same can be said
about the slope values (90183), in Fig. 8. Fig. 9 is
a slope vs. PRT diagram. A data smoothing proce-
dure is illustrated in the following three figures. Fig.
10 shows a series of intercept coefficients (88025).
Fig. 11 shows the smoothed intercept (88925) data.
The intercept residuals (88025) showed in Fig.12
were modeled by an autoregressive process. Fig. 13
shows the best fit of the 10th order AR(10) (88025).
Tests for non-linearity are captured in the remain-
ing four figures: Fig. 14 shows slope linear redun-
dancy statistics, dim=2 (90183)• Fig. i5 shows
slope linear redundancy statistics, dim=3 (90183),

Fig. 16 shows slope non-linear redundancy statis-
tics, dim=2 (9018315), Fig. 17 shows slope non-
linear redundancy statistics, dim=3 (9018315). The
original slope data sets were first differentiated. The
results for different lags are very similar. In both

cases the difference between the linear and nonliner

measures is quite obvious (a factor of 10). That
clearly indicates a need for a nonlinear description
of the AVttRR data sets.

6. Conclusions

We have theorized, based on our numerical simula-
tions, that the dynamics of the coefficients (within

a time frame of days) is almost a periodic process
with random input variables, due to such random
effects as variable cloud cover.

A possible future application target of the pro-
posed algorithms is short term, medium term and
long term data prediction for MODIS. The MODIS
instrument is scheduled to be launched in 1998. One
of the important tasks in the processing of MODIS
data will be to determine the most accurate value of

the calibration coefficients and their corresponding
uncertainties, in other words to model and identify
time series generated by MODIS sensors in different
wavebands. This can be accomplished by combining

the predited values furnished by a nonlinear (neural
net, nonlinear AR) or linear model. A smoothing
algorithm provides calibration values without noise.
A prediction model will be useful especially when

we dealing with the sparse or missing data. An-
other potential application is the detection of sud-
den degradation , as opposed to gradual aging, of
a sensor. That will be characterized by an abrupt

change in the dynamics of the sensor. To detect
this change we may compare predicted values of the
time series, generated by the sensor, with the new
observed values. A discrepancy between the pre-
dicted and observed values flags a faulty sensor.

7. Future Work

We are in the process of using the proposed method-
ology for more extensive data sets. The more ex-
tensive data sets will allow us to demonstrate the
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predictive power of the algorithms and to establish

their error bounds. Special attention will be given

to the integration algorithms for data from differ-

ent calibrators ( Solar Diffuser, Spectral Radiomet-

ric Calibration Assembly, Black Body, Space View),
see chapter 5 in [ Guenther, 1994 ]. Theoretical re-

search will cover experimenting with different neu-

ral network architectures (cascade, RBF, incremen-
tal architectures). A special effort will be devoted

to recovering non-linear difference equations from

the trained neural network and to establishing error
bounds of nonlinear predictors.
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